
A

Major Project Report

On

IDENTIFICATION OF WEEDS FROM CROPS USING

CONVOLUTIONAL NEURAL NETWORKS

(Submitted in partial fulfillment of the requirements for the award of Degree)

BACHELOR OF TECHNOLOGY

in

COMPUTER SCIENCE AND ENGINEERING

By

M.BALA SRAVANI (187R1A05M1)

L. SHIVANI GOUD (187R1A05J2)

B. SHIVA (197R5A0521)

Under the Guidance

Of

K. RANJITH REDDY

(Assistant Professor)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CMR TECHNICAL CAMPUS

UGC AUTONOMOUS

(Accredited by NAAC, NBA, Permanently Affiliated to JNTUH, Approved by AICTE, New Delhi)

Recognized Under Section 2(f) & 12(B) of the UGCAct.1956,

Kandlakoya (V), Medchal Road, Hyderabad-501401.

2018-22

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CERTIFICATE

This is to certify that the project entitled “IDENTIFICATION OF WEEDS FROM CROPS USING

CONVOLUTIONAL NEURAL NETWORKS” being submitted by M.BALA SRAVANI

(187R1A05M1), L.SHIVANI GOUD (187R1A05J2) & B.SHIVA (197R5A0521) in partial

fulfillment of the requirements for the award of the degree of B.Tech in Computer Science and

Engineering to the Jawaharlal Nehru Technological University Hyderabad, is a record of bonafide

work carried out by him/her under our guidance and supervision during the year 2021-22.

The results embodied in this have not been submitted to any other University or Institute for the

award of any degree or diploma.

K. RANJITH REDDY Dr. A. Raji Reddy

Assistant Professor DIRECTOR

INTERNAL GUIDE

Dr. K. Srujan Raju

HOD EXTERNAL EXAMINER

Submitted for viva voice Examination held on

ACKNOWLEDGEMENT

Apart from the efforts of us, the success of any project depends largely on the

encouragement and guidelines of many others. We take this opportunity to express our

gratitude to the people who have been instrumental in the successful completion of this

project. We take this opportunity to express my profound gratitude and deep regard to my

guide.

K. RANJITH REDDY, Assistant Professor, for his exemplary guidance, monitoring,

and constant encouragement throughout the project work. The blessing, help and guidance

given by him shall carry us a long way in the journey of life on which we are about to embark.

We also take this opportunity to express a deep sense of gratitude to the Project Review

Committee (PRC) Dr. M. Varaprasad Rao, Mr. J. Narasimha Rao, Dr. T. S. Mastan Rao,

Dr. Suwarna Gothane, Mr. A. Uday Kiran, Mr. A. Kiran Kumar, Mrs. G. Latha for their

cordial support, valuable information and guidance, which helped us in completing this task

through various stages.

We are also thankful to the head of the Department Dr. K. Srujan Raju for providing

excellent infrastructure and a nice atmosphere for completing the project successfully. We are

obliged to Dr. A. Raji Reddy, Director for being cooperative throughout the course of this

project. We also express our sincere gratitude to Sri. Ch. Gopal Reddy, Chairman for

providing excellent infrastructure and a nice atmosphere throughout the course of this

project.

The guidance and support received from all the members of CMR Technical

Campus who contributed to the completion of the project. We are grateful for their constant

support and help. Finally, we would like to take this opportunity to thank our family for their

constant encouragement, without which this assignment would not be completed. We

sincerely acknowledge and thank all those who gave support directly and indirectly in the

completion of this project.

M.BALA SRAVANI (187R1A05M1)

L. SHIVANI GOUD (187R1A05J2)

B. SHIVA (197R5A0521)

ABSTRACT

Weeds are very annoying for farmers and also not very good for the crops. Weeds

are competitive, fighting agriculture crops or lawn grass for water, light, nutrients and

space. Most are quick growers and will take over many of the areas in which you find them

Its existence might damage the growth of the crops. Therefore, weed control is very

important for farmers. Farmers need to ensure their agricultural fields are free from weeds

for at least once a week, whether they need to spray weeds herbicides to their plantation or

remove it using tools or manually. The aim of this project is to build an application that can

identify the weeds in a given video. An automated image classification application has been

designed to differentiate between weeds and crops. For the image classification method, we

employ the convolutional neural network algorithm to process the image of the object.For

the weed detection algorithm, the convolutional neural network is suitable for this project

because CNN are most applied to analyzing visual image. CNN use variation of multilayer

perceptron’s designed to use minimal preprocessing.

We will be implementing a web-based application where the user will upload the

video of the crops and the system will detect the weeds in the given video. This can also

made into an attachment to robots where it can dig out the weeds for us. But our primary

objective is to make a system that can detect the weeds.

ⅰ

LIST OF FIGURES

FIGURE NO FIGURE NAME PAGE NO

Figure 3.1

Project Architecture

7

Figure 3.3

Use case diagram

19

Figure 3.4

Class diagram

20

Figure 3.5

Sequence diagram

21

Figure 3.6

Activity diagram

22

ⅱ

LIST OF SCREENSHOTS

iii

SCREENSHOT NO SCREENSHOT NAME PAGE NO

Screenshot 5.1.1 Images from training & validation dataset 35

Screenshot 5.1.2 Image inference on real image 36

Screenshot 5.1.3 Image inference on real image 37

Screenshot 5.1.4 Screenshot of video output 38

Screenshot 5.1.5 Screenshot of video output 39

Screenshot 5.1.6 Screenshot of video output 40

Screenshot 5.1.7 Screenshot of video output 41

Screenshot 5.1.8 Screenshot of video output 42

iv

TABLE OF CONTENTS

ABSTRACT i

LIST OF FIGURES ii

1. INTRODUCTION 1

1.1 PROJECT SCOPE 1

1.2 PROJECT PURPOSE 1

1.3 PROJECT FEATURES 1

2. SYSTEM ANALYSIS 2

2.1 PROBLEM DEFINITION 2

2.2 EXISTING SYSTEM 2

2.2.1 LIMITATIONS OF THE EXISTING SYSTEM 3

2.3 PROPOSED SYSTEM 3

2.3.1 ADVANTAGES OF PROPOSED SYSTEM 3

2.4 FEASIBILITY STUDY 4

2.4.1 ECONOMIC FEASIBILITY 4

2.4.2 TECHNICAL FEASIBILITY 5

2.4.3 SOCIAL FEASIBILITY 5

2.5 HARDWARE & SOFTWARE REQUIREMENTS 6

2.5.1 HARDWARE REQUIREMENTS 6

2.5.2 SOFTWARE REQUIREMENTS 6

3. ARCHITECTURE 7

3.1 PROJECT ARCHITECTURE 7

3.2 DESCRIPTION 7

3.3 USE CASE DIAGRAM 19

3.4 CLASS DIAGRAM 20

3.5 SEQUENCE DIAGRAM 21

3.6 ACTIVITY DIAGRAM 22

4. IMPLEMENTATION

4.1 SAMPLE CODE 23

5. RESULTS

5.1 RESULT ANALYSIS 35

5.2 SCREENSHOTS 43

6. TESTING

6.1 INTRODUCTION TO TESTING 46

6.2 TYPES OF TESTING 46

6.2.1 UNIT TESTING 46

6.2.2 INTEGRATION TESTING 46

6.2.3 FUNCTIONAL TESTING 47

6.3 TEST CASES 47

7. CONCLUSION

7.1 CONCLUSION 48

7.2 FUTURE SCOPE 48

8. BIBILOGRAPHY

8.1 REFERENCES 49

8.2 WEBSITES

9. PAPER PUBLICATION

10. CERTIFICATES

 51

8.3 GITHUB LINK

49

 50

57

1. INTRODUCTION

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 1

1. INTRODUCTION

1.1 PROJECT SCOPE

Weed plants can be seen more in a plantation because the plantation have all

nutrition and water for the weeds to grow. This is a very big problem to the farmer because

the weeds consume a large amount of nutrition and water and the other plants cannot grow

in a good shape. Therefore, weed detection system is important in agriculture. This study

presents a method for detecting weeds in crops using convolutional neural networks.

1.2 PROJECT PURPOSE

The purpose of this study is to effectively detect the weeds in crops using

convolution neural networks. As the weed plant consumes a large amount of nutrition and

water, the other crop plants cannot grow in a good shape. Weeds compete with crops for

water, light, nutrients, and space, therefore it is very important to design a system that can

detect the weeds in the crops. Our primary objective is to provide a system that can detect

weeds.

1.3 PROJECT FEATURES

The main feature of the system is to propose a general and effective approach to

detect the weeds in the crop. An automated image classification system has been designed

to differentiate between weeds and crops. For the weed detection algorithm, the

convolutional neural network is suitable because CNN are most applied for analyzing

visual image. The user will upload the video containing the crop field in the application

and the system gives the output video containing identified weeds in the given video.

2. SYSTEM ANALYSIS

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 2

2.SYSTEM ANALYSIS

SYSTEM ANALYSIS:

System Analysis is an important phase in the system development process. The

system is studied to the minute details and analyzed. The system analyst plays an important

role as an interrogator and dwells deep into the working of the present system. In analysis, a

detailed study of these operations performed by the system and their relationships within

and outside the system is done. A key question considered here is, “what must be done to

solve the problem?” The system is viewed as a whole and the inputs to the system are

identified. Once analysis is completed the analyst has a firm understanding of what is to be

done.

2.1 PROBLEM DEFINITION

Building This project is primarily concerned with detecting the weeds in the crops.

The suggested approach attempts to use convolution neural network to obtain the optimal

function in the most effective manner.

• The main objective is to detect weeds in the crops.

• To create a system which uses the given dataset to train and later can

detect the weeds in new data given.

2.2 EXISTING SYSTEM

Existing Systems are available which are based on manual weed detection, in

contrast with the weed detection using machine learning, which has been traditional way

of visual inspection. There are also systems where weeds are identified in the pictures

uploaded by the user. But uploading a lot of pictures is tedious.

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 3

2.2.1 LIMITATIONS OF EXISTING SYSTEM

● Entering the large number of pictures to the system is a tedious work

● Clicking many pictures and uploading them can be tedious

● It is very time consuming.

2.3 PROPOSED SYSTEM

We will be building a system that uses deep learning techniques to identify weeds.

The main feature of the system is to propose a general and effective approach to detect the

weeds in the crop. An automated image classification system has been designed to

differentiate between weeds and crops. For the weeds detection algorithm, the

convolutional neural network is suitable because CNN are most commonly applied to

analyzing visual image. The User will provide the video of his crop plants including weed

crops as an input. Our system will detect the weeds in the input and gives the output video

containing identified weeds in the given crop video. One of the important steps in

increasing the yield is to treat the weeds as it is directly associated with crop yield. We will

be using advanced algorithms like Mask R-CNN built on ResNet-101 and FPN for our

system and we will also compare with other older algorithms to prove higher accuracy of

our system.

2.3.1 ADVANTAGES OF PROPOSED SYSTEM

The system is very simple to design and implement. The system requires GTX 970

graphics card and the system will work in almost all configurations. It has the following

features :-

● Better services

● Ensure data accuracies.

● Greater efficiency

● Minimum time needed for the various processing

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

4 CMRTC

2.4 FEASIBILITY STUDY

The feasibility of the project is analyzed in this phase and business proposal is put

forth with a very general plan for the project with some cost estimates. During system

analysis the feasibility study of the proposed system is to be carried out. This is to ensure

that the proposed system is not a burden to the company. Three key considerations involved

in the feasibility analysis are

● Economical feasibility

● Technical feasibility

● Social feasibility

2.4.1 ECONOMIC FEASIBILITY

The developing system must be justified by cost and benefit. Criteria to ensure that

effort is concentrated on a project, which will give the best return at the earliest. One of the

factors, which affect the development of a new system, is the cost it would require. The

following are some of the important financial questions asked during preliminary

investigation:

● They conduct a full system investigation.

● The cost of the hardware and software.

● The benefits in the form of reduced costs or fewer costly errors.

Since the system is developed as part of the project work, there is no manual cost

to spend for the proposed system. Also, all the resources are already available, which

indicates that the system is economically possible for the development.

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

5 CMRTC

2.4.2 TECHNICAL FEASIBILITY

This study is carried out to check the technical feasibility, that is, the technical

requirements of the system. Any system developed must not have a high demand on the

available technical resources. The developed system must have a modest requirement, as

only minimal or null changes are required for implementing this system.

2.4.3 BEHAVIORAL FEASIBILITY

This includes the following questions:

● Is there sufficient support for the users?

● Will the proposed system cause harm?

The project would be beneficial because it satisfies the objectives of detecting the

weeds from the data given by the user. All behavioral aspects are considered carefully and

conclude that the project is behaviorally feasible.

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

6 CMRTC

2.5 HARDWARE AND SOFTWARE REQUIREMENTS

2.5.1 HARDWARE REQUIREMENTS

Hardware interfaces specify the logical characteristics of each interface between

the software product and the hardware components of the system. The following are some

hardware requirements.

● Graphic Card : NVIDIA GeForce MX350

● Processor : 11th Gen Intel(R) Core(TM) i5-1135G7

● RAM : Min 4GB or Above

● Hard disk : Min 100 GB

2.5.2 SOFTWARE REQUIREMENTS

Software Requirements specify the logical characteristics of each interface and

software components of the system. The following are some software requirements:

● Operating System : Windows 10

● Technology : Python 3.6

● IDE : Google colabs

 3.ARCHITECTURE

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 7

3. ARCHITECTURE

3.1 PROJECT ARCHITECTURE

This project architecture shows the procedure followed to detect the weeds in the

crop using convolution neural network.

Figure 3.1 : Project architecture of Identification of weeds from Crops

3.2 MODULE DESCRIPTION

In the proposed work we used Mask R-CNN built on FPN(Feature Pyramid

Networks) and ResNet101. Feature Pyramid Network (FPN) is a feature extractor designed

for accuracy and speed. It generates multiple feature map layers (multi-scale feature maps)

with better quality information than the regular feature pyramid for object detection.

ResNet-101 is a convolutional neural network that is 101 layers deep. The network can

learn rich feature representations for a wide range of images.

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 8

The key element of Mask R-CNN is the pixel-to-pixel alignment, which is the main

missing piece of Fast/Faster R-CNN. Mask R-CNN adopts the same two-stage

procedure with an identical first stage (which is RPN). In the second stage, in parallel

to predicting the class and box offset, Mask R-CNN also outputs a binary mask for

each RoI. This is in contrast to most recent systems, where classification depends on

mask predictions.

Furthermore, Mask R-CNN is simple to implement and train given the Faster R-CNN

framework, which facilitates a wide range of flexible architecture designs.

Additionally, the mask branch only adds a small computational overhead, enabling a

fast system and rapid experimentation.

Mask R-CNN is basically an extension of Faster R-CNN. Faster R-CNN is widely

used for object detection tasks. For a given image, it returns the class label and

bounding box coordinates for each object in the image. The Mask R-CNN framework

is built on top of Faster R-CNN. So, for a given image, Mask R-CNN, in addition to

the class label and bounding box coordinates for each object, will also return the

object mask.

Backbone Model

Similar to the ConvNet that we use in Faster R-CNN to extract feature maps from the

image, we use the ResNet 101 architecture to extract features from the images in

Mask R-CNN. So, the first step is to take an image and extract features using the

ResNet 101 architecture. These features act as an input for the next layer.

Region Propose Network(RPM)

Now, we take the feature maps obtained in the previous step and apply a region

proposal network (RPM). This basically predicts if an object is present in that region

(or not). In this step, we get those regions or feature maps which the model predicts

contain some object.

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 9

Region Of Interest (ROI)

The regions obtained from the RPN might be of different shapes, right? Hence, we

apply a pooling layer and convert all the regions to the same shape. Next, these

regions are passed through a fully connected network so that the class label and

bounding boxes are predicted.

Till this point, the steps are almost similar to how Faster R-CNN works. Now comes

the difference between the two frameworks. In addition to this, Mask R-CNN also

generates the segmentation mask.

For that, we first compute the region of interest so that the computation time can be

reduced. For all the predicted regions, we compute the Intersection over Union (IoU)

with the ground truth boxes. We can computer IoU like this:

 IoU = Area of the intersection / Area of the union

Now, only if the IoU is greater than or equal to 0.5, we consider that as a region of

interest. Otherwise, we neglect that particular region. We do this for all the regions

and then select only a set of regions for which the IoU is greater than 0.5.

Segmentation Mask

Once we have the RoIs based on the IoU values, we can add a mask branch to the

existing architecture. This returns the segmentation mask for each region that

contains an object. It returns a mask of size 28 X 28 for each region which is then

scaled up for inference.

This is the final step in Mask R-CNN where we predict the masks for all the objects

in the image.

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 10

Images: In our work we have taken 80 foreground images of various types of weeds

along with 37 background images of various fields.

Figure 3.2.1: Foreground Images

Figure 3.2.2 : Background Images

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 11

Image Preprocessing: Here, composed images are created i.e., foreground images are placed on

given different backgrounds and mask images are created accordingly along with mask definition

file (.json file). Mask definition file contains all the details about mask like categories,

subcategories, name, id, etc.

Preprocessing an image is a must so that programs work properly to give the expected output. The

aim of pre-processing is to improve the quality of the image so that we can analyze it in a better

way. By preprocessing we can suppress undesired distortions and enhance some features which

are necessary for the application we are working for.

 Figure 3.2.3 : Example of Training Data along with Mask

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 12

 Trained Mask R-CNN model:

Mask R-CNN is an extension of Faster R-CNN. Mask R-CNN has an additional branch

for predicting segmentation masks on each Region of Interest (RoI) in a pixel-to pixel

manner.

Mask R-CNN model is divided into two parts.

• Region proposal network (RPN) to proposes candidate object bounding

boxes.

• Binary mask classifier to generate mask for every class

 Figure 3.2.4 : Mask R-CNN

❖ Image is run through the CNN to generate the feature maps.

❖ Region Proposal Network (RPN) uses a CNN to generate the multiple Region of

Interest (RoI) using a lightweight binary classifier. It does this using 9 anchors boxes

over the image. The classifier returns object/no-object scores. Non-Max suppression

is applied to Anchors with high objectness score

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 13

❖ The RoI Align network outputs multiple bounding boxes rather than a single definite

one and warp them into a fixed dimension.

❖ Warped features are then fed into fully connected layers to make classification using

softmax and boundary box prediction is further refined using the regression model

❖ Warped features are also fed into Mask classifier, which consists of two CNN’s to

output a binary mask for each RoI. Mask Classifier allows the network to generate

masks for every class without competition among classes.

Figure 3.2.5 : Mask R-CNN on RPN

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 14

 Step by Step Detection

1. Anchor sorting and filtering

Visualizes every step of the first stage Region Proposal Network and displays positive

and negative anchors along with anchor box refinement.

Figure 3.2.6 : Image with multiple anchor boxes

2. Bounding Box Refinement

This is an example of final detection boxes (dotted lines) and the refinement applied to

them (solid lines) in the second stage. Non-Max Suppression will remove all bounding

boxes where IoU is less than or equal to 0.5. It picks the bounding box with the highest

value for IoU and suppress the other bounding boxes for identifying the same object.

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 15

Figure 3.2.7 : Bounding box refinement

3. Mask Generation

Masks are generated. These then get scaled and placed on the image in the right

location.

Figure 3.2.8 : Examples of generated masks

4. Logging to TensorBoard

TensorBoard is a great debugging and visualization tool. The model is configured to

log losses and save weights at the end of every epoch.

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 16

Graph 3.2.9 : Graphs showing loss at every epoch

5. Composing the different pieces into the final result

This is the result we obtain after identifying the objects in the given image. We can have

some false positives here and there. We can reduce them by increasing the training

hours.

Figure 3.2.10 : Image with identified object

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 17

Steps to implement Mask R-CNN:

We will be using the mask R-CNN framework created by the Data scientists and

researchers at Facebook AI Research (FAIR).

Let’s have a look at the steps which we will follow to perform image segmentation

using Mask R-CNN.

Step 1: Clone the repository

First, we will clone the mask rcnn repository which has the architecture for Mask R-

CNN. Use the following command to clone the repository:

git clone https://github.com/matterport/Mask_RCNN.git

Once this is done, we need to install the dependencies required by Mask R-CNN.

Step 2: Install the dependencies

Here is a list of all the dependencies for Mask R-CNN:

• numpy

• scipy

• Pillow

• cython

• matplotlib

• scikit-image

• tensorflow>=1.3.0

• keras>=2.0.8

• opencv-python

• h5py

• imgaug

• IPython

You must install all these dependencies before using the Mask R-CNN framework.

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 18

Step 3: Download the pre-trained weights (trained on MS COCO)

Next, we need to download the pretrained weights. These weights are obtained from a

model that was trained on the MS COCO dataset. Once you have downloaded the

weights, paste this file in the samples folder of the Mask RCNN repository that we

cloned in step 1.

Step 4: Predicting for our image

Finally, we will use the Mask R-CNN architecture and the pretrained weights to

generate predictions for our own images.

We will implement all these things in Python and then generate the masks along with

the classes and bounding boxes for objects in our images.

Advantages of mask R-CNN:

• Simplicity: Mask R-CNN is simple to train.

• Performance: Mask R-CNN outperforms all existing, single-model entries on

every task.

• Efficiency: The method is very efficient and adds only a small overhead to

Faster R-CNN.

• Flexibility: Mask R-CNN is easy to generalize to other tasks. For example, it is

possible to use Mask R-CNN for human pose estimation in the same

framework.

Video Input: The path of the video containing weeds is given as the input to

the trained Mask R-CNN model.

Video Output: Weeds are detected in the given video input using the algorithm and

the output video of identified weeds is sent to the given path.

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 19

3.3 USE CASE DIAGRAM

In the use case diagram, we have basically two actors who are the user and the

system. The user uploads the video of crops and the system detects the weeds in

the given video.

Figure 3.3 : Use case diagram for Identification of weeds from crops

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 20

3.4 CLASS DIAGRAM

Class Diagram is a collection of classes and objects.

Figure 3.4 : Class Diagram for Identification of weeds from crops

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 21

3.5 SEQUENCE DIAGRAM

It describes the object interactions arranged in a time sequence .

Figure 3.5 : Sequence diagram for Identification of weeds from crops

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 22

3.6 ACTIVITY DIAGRAM

It describes the flow of activity states.

Figure 3.6 : Activity diagram for Identification of weeds from crops

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

 4.IMPLEMENTATION

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 23

4. IMPLEMENTATION

 4.1 SAMPLE CODE

A)MASK_RCNN.IPYNB
%load_ext autoreload
import os
import sys
import json
import numpy as np
import time
from PIL import Image, ImageDraw A)MASK_RCNN.IPYNB
%load_ext autoreload
import os
import sys
import json
import numpy as np
import time
from PIL import Image, ImageDraw
from pathlib import Path

Set the ROOT_DIR variable to the root directory of the Mask_RCNN git repo

ROOT_DIR = 'C:/Users/HPPP/anaconda3/cocosynth-master/Mask_RCNN-master/'
assert os.path.exists(ROOT_DIR), 'ROOT_DIR does not exist. Did you forget to read
the instructions above? ;)'

Directory to save logs and trained model

MODEL_DIR = os.path.join(ROOT_DIR, "logs")

Local path to trained weights file

COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5")

Download COCO trained weights from Releases if needed

if not os.path.exists(COCO_MODEL_PATH):
 utils.download_trained_weights(COCO_MODEL_PATH)

#CONFIGURATION

class CocoSynthConfig(Config):
 """Configuration for training on the box_synthetic dataset.
 Derives from the base Config class and overrides specific values.
 """
 # Give the configuration a recognizable name

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 23

 NAME = "cocosynth_dataset"

Train on 1 GPU and 1 image per GPU. Batch size is 52 (GPUs * images/GPU).

 GPU_COUNT = 1
 IMAGES_PER_GPU = 1

 # Number of classes (including background)

 NUM_CLASSES = 2 # background + 14 box types

 # All of our training images are 512x512

 IMAGE_MIN_DIM = 512
 IMAGE_MAX_DIM = 512

 # You can experiment with this number to see if it improves training

 STEPS_PER_EPOCH = 1000

This is how often validation is run. If you are using too much hard drive space
 # on saved models (in the MODEL_DIR), try making this value larger.

 VALIDATION_STEPS = 5

 # Matterport originally used resnet101, but I downsized to fit it on my graphics card

 BACKBONE = 'resnet101'

 # To be honest, I haven't taken the time to figure out what these do

 RPN_ANCHOR_SCALES = (8, 16, 32, 64, 128)
 TRAIN_ROIS_PER_IMAGE = 32
 MAX_GT_INSTANCES = 50
 POST_NMS_ROIS_INFERENCE = 500
 POST_NMS_ROIS_TRAINING = 1000
config = CocoSynthConfig()
config.display()

#DEFINE A DATASET
class CocoLikeDataset(utils.Dataset):
 """ Generates a COCO-like dataset, i.e. an image dataset annotated in the style of the
COCO dataset.
 See http://cocodataset.org/#home for more information.
 """
 def load_data(self, annotation_json, images_dir):
 """ Load the coco-like dataset from json
 Args:
 annotation_json: The path to the coco annotations json file
 images_dir: The directory holding the images referred to by the json file

24

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 23

 """

 # Load json from file

 json_file = open(annotation_json)
 coco_json = json.load(json_file)
 json_file.close()

Add the class names using the base method from utils.Dataset

 source_name = "coco_like"
 for category in coco_json['categories']:
 class_id = category['id']
 class_name = category['name']
 if class_id < 1:
 print('Error: Class id for "{}" cannot be less than one. (0 is reserved for the
 background)'.format(class_name))
 return
 self.add_class(source_name, class_id, class_name)

 # Get all annotations

 annotations = {}
 for annotation in coco_json['annotations']:
 image_id = annotation['image_id']
 if image_id not in annotations:
 annotations[image_id] = []
 annotations[image_id].append(annotation)

 # Get all images and add them to the dataset

 seen_images = {}
 for image in coco_json['images']:
 image_id = image['id']
 if image_id in seen_images:
 print("Warning: Skipping duplicate image id: {}".format(image))
 else:
 seen_images[image_id] = image
 try:
 image_file_name = image['file_name']
 image_width = image['width']
 image_height = image['height']
 except KeyError as key:
 print("Warning: Skipping image (id: {}) with missing key: {}".format(image_id,
key))
 image_path = os.path.abspath(os.path.join(images_dir, image_file_name))
 image_annotations = annotations[image_id]

Add the image using the base method from utils.Dataset

25

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 23

 self.add_image(
 source=source_name,
 image_id=image_id,
 path=image_path,
 width=image_width,
 height=image_height,
 annotations=image_annotations
)

 def load_mask(self, image_id):
 """ Load instance masks for the given image.
 MaskRCNN expects masks in the form of a bitmap [height, width, instances].
 Args:
 image_id: The id of the image to load masks for
 Returns:
 masks: A bool array of shape [height, width, instance count] with
 one mask per instance.
 class_ids: a 1D array of class IDs of the instance masks.
 """
 image_info = self.image_info[image_id]
 annotations = image_info['annotations']
 instance_masks = []
 class_ids = []
 for annotation in annotations:
 class_id = annotation['category_id']
 mask = Image.new('1', (image_info['width'], image_info['height']))
 mask_draw = ImageDraw.ImageDraw(mask, '1')
 for segmentation in annotation['segmentation']:
 mask_draw.polygon(segmentation, fill=1)
 bool_array = np.array(mask) > 0
 instance_masks.append(bool_array)
 class_ids.append(class_id)
 mask = np.dstack(instance_masks)
 class_ids = np.array(class_ids, dtype=np.int32)
 return mask, class_ids

#CREATE THE TRAINING AND VALIDATION DATASETS

dataset_train = CocoLikeDataset()
dataset_train.load_data('C:/Users/HPPP/anaconda3/cocosynthmaster/datasets/weeds/
output/training/coco_instances.json',
 'C:/Users/HPPP/anaconda3/cocosynth-master/datasets/weeds/output/training/images')
dataset_train.prepare()
dataset_val = CocoLikeDataset()
dataset_val.load_data('C:/Users/HPPP/anaconda3/cocosynthmaster/datasets/weeds/out
put/val/coco_instances.json',
 'C:/Users/HPPP/anaconda3/cocosynth-master/datasets/weeds/output/val/images')
dataset_val.prepare()

26

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 23

#DISPLAY FEW IMAGES FROM TRAIN AND VAL DATASETS

for name, dataset in [('training', dataset_train), ('validation', dataset_val)]:
 print(f'Displaying examples from {name} dataset:')
 image_ids = np.random.choice(dataset.image_ids, 3)
 for image_id in image_ids:
 image = dataset.load_image(image_id)
 mask, class_ids = dataset.load_mask(image_id)
 visualize.display_top_masks(image, mask, class_ids, dataset.class_names)

#CREATE THE TRAINING MODEL AND TRAIN
Create model in training mode

model = modellib.MaskRCNN(mode="training", config=config,
 model_dir=MODEL_DIR)

Which weights to start with?
init_with = "coco" # imagenet, coco, or last
if init_with == "imagenet":
 model.load_weights(model.get_imagenet_weights(), by_name=True)
elif init_with == "coco":

 # Load weights trained on MS COCO, but skip layers that
 # are different due to the different number of classes
 # See README for instructions to download the COCO weights

 model.load_weights(COCO_MODEL_PATH, by_name=True,
 exclude=["mrcnn_class_logits", "mrcnn_bbox_fc",
 "mrcnn_bbox", "mrcnn_mask"])
elif init_with == "last":

 # Load the last model you trained and continue training

 model.load_weights(model.find_last(), by_name=True)

#TRAINING
Train the head branches
Passing layers="heads" freezes all layers except the head
layers. You can also pass a regular expression to select
which layers to train by name pattern.

start_train = time.time()
model.train(dataset_train, dataset_val,
 learning_rate=config.LEARNING_RATE,
 epochs=4,
 layers='heads')
end_train = time.time()
minutes = round((end_train -start_train) / 60, 2)
print(f'Training took {minutes} minutes')

27

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 23

Fine tune all layers
Passing layers="all" trains all layers. You can also
pass a regular expression to select which layers to
train by name pattern.

start_train = time.time()
model.train(dataset_train, dataset_val,
 learning_rate=config.LEARNING_RATE / 10,
 epochs=8,
 layers="all")
end_train = time.time()
minutes = round((end_train -start_train) / 60, 2)
print(f'Training took {minutes} minutes')

#VIDEO INFERENCE

video_file = Path("../datasets/box_dataset_synthetic/videotest/boxvideo_24fps.mp4")
video_save_dir = Path("../datasets/box_dataset_synthetic/videotest/save")
video_save_dir.mkdir(exist_ok=True)

#ADJUST CONFIG PARAMETERS

class VideoInferenceConfig(CocoSynthConfig):
 GPU_COUNT = 1
 IMAGES_PER_GPU = 1
 IMAGE_MIN_DIM = 1088
 IMAGE_MAX_DIM = 1920
 IMAGE_SHAPE = [1920, 1080, 3]
 DETECTION_MIN_CONFIDENCE = 0.80
inference_config = VideoInferenceConfig()

#SETUP MODEL AND LOAD TRAINED WEIGHTS
Recreate the model in inference mode

model = modellib.MaskRCNN(mode="inference",
 config=inference_config,
 model_dir=MODEL_DIR)

Get path to saved weights
Either set a specific path or find last trained weights
model_path = str(Path(ROOT_DIR) / "logs" /

"box_synthetic20190328T2255/mask_rcnn_box_synthetic_0016.h5")
model_path = model.find_last()

Load trained weights (fill in path to trained weights here)

assert model_path != "", "Provide path to trained weights"
print("Loading weights from ", model_path)
model.load_weights(model_path, by_name=True)

28

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 23

import cv2
import skimage
import random
import colorsys
from tqdm import tqdm
def random_colors(N, bright=True):
 """ Generate random colors.
 To get visually distinct colors, generate them in HSV space then
 convert to RGB.
 Args:
 N: the number of colors to generate
 bright: whether or not to use bright colors
 Returns:
 a list of RGB colors, e.g [(0.0, 1.0, 0.0), (1.0, 0.0, 0.5), ...]
 """
 brightness = 1.0 if bright else 0.7
 hsv = [(i / N, 1, brightness) for i in range(N)]
 colors = list(map(lambda c: colorsys.hsv_to_rgb(*c), hsv))
 random.shuffle(colors)
 return colors
def apply_mask(image, mask, color, alpha=0.5):
 """ Apply the given mask to the image.
 Args:
 image: a cv2 image
 mask: a mask of which pixels to color
 color: the color to use
 alpha: how visible the mask should be (0 to 1)
 Returns:
 a cv2 image with mask applied
 """
 for c in range(3):
 image[:, :, c] = np.where(mask == 1,
 image[:, :, c] *
 (1 - alpha) + alpha * color[c] * 255,
 image[:, :, c])
 return image
def display_instances(image, boxes, masks, ids, names, scores, colors):
 """ Take the image and results and apply the mask, box, and label
 Args:
 image: a cv2 image
 boxes: a list of bounding boxes to display
 masks: a list of masks to display
 ids: a list of class ids
 names: a list of class names corresponding to the ids
 scores: a list of scores of each instance detected
 colors: a list of colors to use
 Returns:
 a cv2 image with instances displayed
 """
 n_instances = boxes.shape[0]

24 29

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 23

 if not n_instances:
 return image # no instances
 else:
 assert boxes.shape[0] == masks.shape[-1] == ids.shape[0]
 for i, color in enumerate(colors):

Check if any boxes to show

 if not np.any(boxes[i])
 continue

 # Check if any scores to show

 if scores is not None:
 score = scores[i]
 else:
 score = None

 # Add the mask

 image = apply_mask(image, masks[:, :, i], color)

 # Add the bounding box

 y1, x1, y2, x2 = boxes[i]
 image = cv2.rectangle(image, (x1, y1), (x2, y2), color, 2)

 # Add the label

 label = names[ids[i]]
 if score:
 label = f'{label} {score:.2f}'
 label_pos = (x1 + (x2 - x1) // 2, y1 + (y2 - y1) // 2) # center of bounding box
 image = cv2.putText(image, label, label_pos, cv2.FONT_HERSHEY_DUPLEX, 0.7,
color, 2)
 return image

#PREPARE FOR INFERENCE

video_file = Path("../datasets/box_dataset_synthetic/videotest/boxvideo_24fps.mp4")
video_save_dir = Path("../datasets/box_dataset_synthetic/videotest/save")
video_save_dir.mkdir(exist_ok=True)
vid_name = video_save_dir / "output.mp4"
v_format="FMP4"
fourcc = cv2.VideoWriter_fourcc(*v_format)
print('Writing output video to: ' + str(vid_name))

#colors = random_colors(30)

colors = [(1.0, 1.0, 0.0)] * 30

25

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 23

Change color representation from RGB to BGR before displaying instances

colors = [(color[2], color[1], color[0]) for color in colors]

#PREPARE INFERENCE ON VIDEO

input_video = cv2.VideoCapture(str(video_file))
frame_count = int(input_video.get(cv2.CAP_PROP_FRAME_COUNT))
fps = int(input_video.get(cv2.CAP_PROP_FPS))
output_video = None
vid_size = None
current_frame = 0
for i in tqdm(range(frame_count)):

 # Read the current frame

 ret, frame = input_video.read()
 if not ret:
 break
 current_frame += 1

 # Change color representation from BGR to RGB before running model.detect()

 detect_frame = frame[:, :, ::-1]

 # Run inference on the color-adjusted frame

 results = model.detect([detect_frame], verbose=0)
 r = results[0]
 n_instances = r['rois'].shape[0]

Make sure we have enough colors

 if len(colors) < n_instances:

 # not enough colors, generate more

 more_colors = random_colors(n_instances - len(colors))

 # Change color representation from RGB to BGR before displaying instances

 more_colors = [(color[2], color[1], color[0]) for color in more_colors]
 colors += more_colors

 # Display instances on the original frame

 display_frame = display_instances(frame, r['rois'], r['masks'], r['class_ids'],
 dataset_train.class_names, r['scores'], colors[0:n_instances])

 # Make sure we got displayed instances

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 23

 if display_frame is not None:
 frame = display_frame

 # Create the output_video if it doesn't yet exist

 if output_video is None:
 if vid_size is None:
 vid_size = frame.shape[1], frame.shape[0]
 output_video = cv2.VideoWriter(str(vid_name), fourcc, float(fps), vid_size, True)

 # Resize frame if necessary

 if vid_size[0] != frame.shape[1] and vid_size[1] != frame.shape[0]:
 frame = cv2.resize(frame, vid_size)

 # Write the frame to the output_video

 output_video.write(frame)
input_video.release()
output_video.release()
from pathlib import Path

Set the ROOT_DIR variable to the root directory of the Mask_RCNN git repo

ROOT_DIR = 'C:/Users/HPPP/anaconda3/cocosynth-master/Mask_RCNN-master/'
assert os.path.exists(ROOT_DIR), 'ROOT_DIR does not exist. Did you forget to read
the
instructions above? ;)'

Directory to save logs and trained model

MODEL_DIR = os.path.join(ROOT_DIR, "logs")

Local path to trained weights file

COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5")

Download COCO trained weights from Releases if needed

if not os.path.exists(COCO_MODEL_PATH):
 utils.download_trained_weights(COCO_MODEL_PATH)

#CONFIGURATION

class CocoSynthConfig(Config):
 """Configuration for training on the box_synthetic dataset.
 Derives from the base Config class and overrides specific values.
 """

Give the configuration a recognizable name

26

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 23

 NAME = "cocosynth_dataset"

 # Train on 1 GPU and 1 image per GPU. Batch size is 52 (GPUs * images/GPU).

 GPU_COUNT = 1
 IMAGES_PER_GPU = 1

 # Number of classes (including background)

 NUM_CLASSES = 2 # background + 14 box types

 # All of our training images are 512x512

 IMAGE_MIN_DIM = 512
 IMAGE_MAX_DIM = 512

 # You can experiment with this number to see if it improves training

 STEPS_PER_EPOCH = 1000

 # This is how often validation is run. If you are using too much hard drive space
 # on saved models (in the MODEL_DIR), try making this value larger.

 VALIDATION_STEPS = 5

 # Matterport originally used resnet101, but I downsized to fit it on my graphics card
 BACKBONE = 'resnet101'
 # To be honest, I haven't taken the time to figure out what these do

 RPN_ANCHOR_SCALES = (8, 16, 32, 64, 128)
 TRAIN_ROIS_PER_IMAGE = 32
 MAX_GT_INSTANCES = 50
 POST_NMS_ROIS_INFERENCE = 500
 POST_NMS_ROIS_TRAINING = 1000
config = CocoSynthConfig()
config.display()

#DEFINE A DATASET

class CocoLikeDataset(utils.Dataset):
 """ Generates a COCO-like dataset, i.e. an image dataset annotated in the style of the
COCO dataset.
 See http://cocodataset.org/#home for more information.
 """
 def load_data(self, annotation_json, images_dir):
 """ Load the coco-like dataset from json
 Args:
 annotation_json: The path to the coco annotations json file
 images_dir: The directory holding the images referred to by the json file
 """

27

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 23

 # Load json from file

 json_file = open(annotation_json)
 coco_json = json.load(json_file)
 json_file.close()

 # Add the class names using the base method from utils.Dataset

 source_name = "coco_like"
 for category in coco_json['categories']:
 class_id = category['id']
 class_name = category['name']
 if class_id < 1:
 print('Error: Class id for "{}" cannot be less than one. (0 is reserved for the
background)'.format(class_name))
 return
 self.add_class(source_name, class_id, class_name)

 # Get all annotations

 annotations = {}
 for annotation in coco_json['annotations']:
 image_id = annotation['image_id']
 if image_id not in annotations:
 annotations[image_id] = []
 annotations[image_id].append(annotation)

 # Get all images and add them to the dataset

 seen_images = {}
 for image in coco_json['images']:
 image_id = image['id']
 if image_id in seen_images:
 print("Warning: Skipping duplicate image id: {}".format(image))
 else:
 seen_images[image_id] = image
 try:
 image_file_name = image['file_name']
 image_width = image['width']
 image_height = image['height']
 except KeyError as key:
 print("Warning: Skipping image (id: {}) with missing key: {}".format(image_id,
key))
 image_path = os.path.abspath(os.path.join(images_dir, image_file_name))
 image_annotations = annotations[image_id]

Add the image using the base method from utils.Dataset

 self.add_image(
 source=source_name,

28

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 23

 image_id=image_id,
 path=image_path,
 width=image_width,
 height=image_height,
 annotations=image_annotations
)

 def load_mask(self, image_id):
 """ Load instance masks for the given image.
 MaskRCNN expects masks in the form of a bitmap [height, width, instances].
 Args:
 image_id: The id of the image to load masks for
 Returns:
 masks: A bool array of shape [height, width, instance count] with
 one mask per instance.
 class_ids: a 1D array of class IDs of the instance masks.
 """
 image_info = self.image_info[image_id]
 annotations = image_info['annotations']
 instance_masks = []
 class_ids = []
 for annotation in annotations:
 class_id = annotation['category_id']
 mask = Image.new('1', (image_info['width'], image_info['height']))
 mask_draw = ImageDraw.ImageDraw(mask, '1')
 for segmentation in annotation['segmentation']:
 mask_draw.polygon(segmentation, fill=1)
 bool_array = np.array(mask) > 0
 instance_masks.append(bool_array)
 class_ids.append(class_id)
 mask = np.dstack(instance_masks)
 class_ids = np.array(class_ids, dtype=np.int32)
 return mask, class_ids

#CREATE THE TRAINING AND VALIDATION DATASETS

dataset_train = CocoLikeDataset()
dataset_train.load_data('C:/Users/HPPP/anaconda3/cocosynthmaster/datasets/weeds/
output/training/coco_instances.json',
 'C:/Users/HPPP/anaconda3/cocosynth-master/datasets/weeds/output/training/images')
dataset_train.prepare()
dataset_val = CocoLikeDataset()
dataset_val.load_data('C:/Users/HPPP/anaconda3/cocosynthmaster/datasets/weeds/out
put/val/coco_instances.json',
 'C:/Users/HPPP/anaconda3/cocosynth-master/datasets/weeds/output/val/images')
dataset_val.prepare()

#DISPLAY FEW IMAGES FROM TRAIN AND VAL DATASETS

for name, dataset in [('training', dataset_train), ('validation', dataset_val)]:

29

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 23

 print(f'Displaying examples from {name} dataset:')
 image_ids = np.random.choice(dataset.image_ids, 3)
 for image_id in image_ids:
 image = dataset.load_image(image_id)
 mask, class_ids = dataset.load_mask(image_id)
 visualize.display_top_masks(image, mask, class_ids, dataset.class_names)

#CREATE THE TRAINING MODEL AND TRAIN
Create model in training mode

model = modellib.MaskRCNN(mode="training", config=config,
 model_dir=MODEL_DIR)

Which weights to start with?

init_with = "coco" # imagenet, coco, or last
if init_with == "imagenet":
 model.load_weights(model.get_imagenet_weights(), by_name=True)
elif init_with == "coco":

 # Load weights trained on MS COCO, but skip layers that
 # are different due to the different number of classes
 # See README for instructions to download the COCO weights

 model.load_weights(COCO_MODEL_PATH, by_name=True,
 exclude=["mrcnn_class_logits", "mrcnn_bbox_fc",
 "mrcnn_bbox", "mrcnn_mask"])
elif init_with == "last":

 # Load the last model you trained and continue training

 model.load_weights(model.find_last(), by_name=True)

#TRAINING
Train the head branches
Passing layers="heads" freezes all layers except the head
layers. You can also pass a regular expression to select
which layers to train by name pattern.

start_train = time.time()
model.train(dataset_train, dataset_val,
 learning_rate=config.LEARNING_RATE,
 epochs=4,
 layers='heads')
end_train = time.time()
minutes = round((end_train -start_train) / 60, 2)
print(f'Training took {minutes} minutes')

30

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 23

Fine tune all layers
Passing layers="all" trains all layers. You can also
pass a regular expression to select which layers to
train by name pattern.

start_train = time.time()
model.train(dataset_train, dataset_val,
 learning_rate=config.LEARNING_RATE / 10,
 epochs=8,
 layers="all")
end_train = time.time()
minutes = round((end_train -start_train) / 60, 2)
print(f'Training took {minutes} minutes')

#VIDEO INFERENCE

video_file = Path("../datasets/box_dataset_synthetic/videotest/boxvideo_24fps.mp4")
video_save_dir = Path("../datasets/box_dataset_synthetic/videotest/save")
video_save_dir.mkdir(exist_ok=True)

#ADJUST CONFIG PARAMETERS

class VideoInferenceConfig(CocoSynthConfig):
 GPU_COUNT = 1
 IMAGES_PER_GPU = 1
 IMAGE_MIN_DIM = 1088
 IMAGE_MAX_DIM = 1920
 IMAGE_SHAPE = [1920, 1080, 3]
 DETECTION_MIN_CONFIDENCE = 0.80
inference_config = VideoInferenceConfig()

#SETUP MODEL AND LOAD TRAINED WEIGHTS
Recreate the model in inference mode

model = modellib.MaskRCNN(mode="inference",
 config=inference_config,
 model_dir=MODEL_DIR)

Get path to saved weights
Either set a specific path or find last trained weights
model_path = str(Path(ROOT_DIR) / "logs" /

"box_synthetic20190328T2255/mask_rcnn_box_synthetic_0016.h5")
model_path = model.find_last()

Load trained weights (fill in path to trained weights here)

assert model_path != "", "Provide path to trained weights"
print("Loading weights from ", model_path)
model.load_weights(model_path, by_name=True)

30

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 23

import cv2
import skimage
import random
import colorsys
from tqdm import tqdm
def random_colors(N, bright=True):
 """ Generate random colors.
 To get visually distinct colors, generate them in HSV space then
 convert to RGB.
 Args:
 N: the number of colors to generate
 bright: whether or not to use bright colors
 Returns:
 a list of RGB colors, e.g [(0.0, 1.0, 0.0), (1.0, 0.0, 0.5), ...]
 """
 brightness = 1.0 if bright else 0.7
 hsv = [(i / N, 1, brightness) for i in range(N)]
 colors = list(map(lambda c: colorsys.hsv_to_rgb(*c), hsv))
 random.shuffle(colors)
 return colors
def apply_mask(image, mask, color, alpha=0.5):
 """ Apply the given mask to the image.
 Args:
 image: a cv2 image
 mask: a mask of which pixels to color
 color: the color to use
 alpha: how visible the mask should be (0 to 1)
 Returns:
 a cv2 image with mask applied
 """
 for c in range(3):
 image[:, :, c] = np.where(mask == 1,
 image[:, :, c] *
 (1 - alpha) + alpha * color[c] * 255,
 image[:, :, c])
 return image
def display_instances(image, boxes, masks, ids, names, scores, colors):
 """ Take the image and results and apply the mask, box, and label
 Args:
 image: a cv2 image
 boxes: a list of bounding boxes to display
 masks: a list of masks to display
 ids: a list of class ids
 names: a list of class names corresponding to the ids
 scores: a list of scores of each instance detected
 colors: a list of colors to use
 Returns:
 a cv2 image with instances displayed
 """
 n_instances = boxes.shape[0]

31

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 23

 if not n_instances:
 return image # no instances
 else:
 assert boxes.shape[0] == masks.shape[-1] == ids.shape[0]
 for i, color in enumerate(colors):

 # Check if any boxes to show

 if not np.any(boxes[i])
 continue

 # Check if any scores to show

 if scores is not None:
 score = scores[i]
 else:
 score = None

 # Add the mask

 image = apply_mask(image, masks[:, :, i], color)

 # Add the bounding box

 y1, x1, y2, x2 = boxes[i]
 image = cv2.rectangle(image, (x1, y1), (x2, y2), color, 2)

 # Add the label

 label = names[ids[i]]
 if score:
 label = f'{label} {score:.2f}'
 label_pos = (x1 + (x2 - x1) // 2, y1 + (y2 - y1) // 2) # center of bounding box
 image = cv2.putText(image, label, label_pos, cv2.FONT_HERSHEY_DUPLEX, 0.7,
color, 2)
 return image

#PREPARE FOR INFERENCE

video_file = Path("../datasets/box_dataset_synthetic/videotest/boxvideo_24fps.mp4")
video_save_dir = Path("../datasets/box_dataset_synthetic/videotest/save")
video_save_dir.mkdir(exist_ok=True)
vid_name = video_save_dir / "output.mp4"
v_format="FMP4"
fourcc = cv2.VideoWriter_fourcc(*v_format)
print('Writing output video to: ' + str(vid_name))

#colors = random_colors(30)

colors = [(1.0, 1.0, 0.0)] * 30

32

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 23

Change color representation from RGB to BGR before displaying instances

colors = [(color[2], color[1], color[0]) for color in colors]

#PREPARE INFERENCE ON VIDEO

input_video = cv2.VideoCapture(str(video_file))
frame_count = int(input_video.get(cv2.CAP_PROP_FRAME_COUNT))
fps = int(input_video.get(cv2.CAP_PROP_FPS))
output_video = None
vid_size = None
current_frame = 0
for i in tqdm(range(frame_count)):

 # Read the current frame

 ret, frame = input_video.read()
 if not ret:
 break
 current_frame += 1

 # Change color representation from BGR to RGB before running model.detect()

 detect_frame = frame[:, :, ::-1]

 # Run inference on the color-adjusted frame

 results = model.detect([detect_frame], verbose=0)
 r = results[0]
 n_instances = r['rois'].shape[0]

 # Make sure we have enough colors

 if len(colors) < n_instances:

 # not enough colors, generate more

 more_colors = random_colors(n_instances - len(colors))

 # Change color representation from RGB to BGR before displaying instances

 more_colors = [(color[2], color[1], color[0]) for color in more_colors]
 colors += more_colors

 # Display instances on the original frame
 display_frame = display_instances(frame, r['rois'], r['masks'], r['class_ids'],
 dataset_train.class_names, r['scores'], colors[0:n_instances])

33

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 23

 # Make sure we got displayed instances

 if display_frame is not None:
 frame = display_frame

 # Create the output_video if it doesn't yet exist

 if output_video is None:
 if vid_size is None:
 vid_size = frame.shape[1], frame.shape[0]
 output_video = cv2.VideoWriter(str(vid_name), fourcc, float(fps), vid_size, True)

 # Resize frame if necessary

 if vid_size[0] != frame.shape[1] and vid_size[1] != frame.shape[0]:
 frame = cv2.resize(frame, vid_size)

 # Write the frame to the output_video

 output_video.write(frame)
input_video.release()
output_video.release()

34

 5.RESULTS

IDENTIFI IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL

CMRTC 28

5.1 SCREENSHOTS

Screenshot 5.1.1 : Displaying few images from training and validation dataset

35

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 32

Screenshot 5.1.2 : Image inference on real image

Here we are loading an image to see how our model performs. We can load any of our

images to test the model.

We will use the Mask R-CNN model along with the pretrained weights and see how well

it segments the objects in the image. We will first take the predictions from the model

and then plot the results to visualize them.

We can see that the model has done pretty well to segment the weeds in the image. We

can look at each mask or the segmented objects separately as well.

36

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 32

Screenshot 5.1.3 : Image inference on real image

Here we are loading an image to see how our model performs. We can load any of our

images to test the model.

We will use the Mask R-CNN model along with the pretrained weights and see how well

it segments the objects in the image. We will first take the predictions from the model

and then plot the results to visualize them.

We can see that the model has done pretty well to segment the weeds in the image. We

can look at each mask or the segmented objects separately as well.

37

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 32

Screenshot 5.1.4 : Screenshot of video output

38

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 32

Screenshot 5.1.5 : Screenshot of video output

39

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 32

Screenshot 5.1.6 : Screenshot of video output

40

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 32

Screenshot 5.1.7 : Screenshot of video output

This is the result we got using our Mask-RCNN model. We can see that it predicted the
weeds pretty well.

41

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 32

Screenshot 5.1.8 : Screenshot of video output

42

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 33

5.2 RESULT ANALYSIS:

The proposed work has been performed on a dataset of around 1000 training images

and up to 300 validation images. The purpose of the work is to detect the weeds

using mask R-CNN.

Mask R-CNN (Regional Convolutional Neural Network) has been the state-of-the-

art model for object instance segmentation since it was proposed. Mask R-CNN

utilizes a relatively simple method to achieve its success in tasks of object detection,

instance segmentation, and key point detection. We had tested with several

backbones and different instance segmentation methods.

The key element of Mask R-CNN is the pixel-to-pixel alignment, which is the main

missing piece of Fast/Faster R-CNN. Mask R-CNN adopts the same two-stage

procedure with an identical first stage (which is RPN). In the second stage, in

parallel to predicting the class and box offset, Mask R-CNN also outputs a binary

mask for each RoI. This is in contrast to most recent systems, where classification

depends on mask predictions.

Furthermore, Mask R-CNN is simple to implement and train given the Faster R-

CNN framework, which facilitates a wide range of flexible architecture designs.

Additionally, the mask branch only adds a small computational overhead, enabling

a fast system and rapid experimentation.

43

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 33

Table 5.2.1 : Comparing different instance segmentation methods

The results show that no matter what backbone network is used, Mask R-CNN can

always outperform. We can also see that using ResNet-101 FPN can give much

better results.

Graph 5.2.2 : Graph showing accuracy of Mask R-CNN

44

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 34

Accuracy comparison of Mask R-CNN, TLD, Faster-RCNN, RCNN algorithms for

maintenance personnel. In the figure, the X-axis represents the number of images

measured, and the y-axis represents the accuracy of the algorithm recognition. We can

see that Mask R-CNN outperforms all the other algorithms with outmost accuracy.

45

 6.TESTING

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

6 TESTING

6.1 INTRODUCTION TO TESTING

The purpose of testing is to discover errors. Testing is the process of trying to discover

every conceivable fault or weakness in a work product. It provides a way to check the

functionality of components, subassemblies, assemblies and/or a finished product. It is the

process of exercising software with the intent of ensuring that the Software system meets

its requirements and user expectations and does not fail in an unacceptable manner. There

are various types of tests. Each test type addresses a specific testing requirement.

6.2 TYPES OF TESTING

6.2.1 UNIT TESTING

Unit testing involves the design of test cases that validate that the internal program logic

is functioning properly, and that program inputs produce valid outputs. All decision

branches and internal code flow should be validated. It is the testing of individual software

units of the application .it is done after the completion of an individual unit before

integration. This is a structural testing, that relies on knowledge of its construction and is

invasive. Unit tests perform basic tests at component level and test a specific business

process, application, and/or system configuration. Unit tests ensure that each unique path

of a business process performs accurately to the documented specifications and contains

clearly defined inputs and expected results.

6.2.2 INTEGRATION TESTING

Integration tests are designed to test integrated software components to determine if they

run as one program. Testing is event driven and is more concerned with the basic outcome

of screens or fields. Integration tests demonstrate that although the components were

individually satisfaction, as shown by successfully unit testing, the combination of

components is correct and consistent. Integration testing is specifically aimed at exposing

the problems that arise from the combination of components.

CMRTC 35 46

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 36

6.2.3 FUNCTIONAL TESTING

Functional tests provide systematic demonstrations that functions tested are available as

specified by the business and technical requirements, system documentation, and user

manuals.

Functional testing is centered on the following items:

Valid Input : Identified classes of valid input must be accepted.

Invalid Input : Identified classes of invalid input must be rejected.

Functions : Identified functions must be exercised.

Output : Identified classes of application outputs must be exercised.

Systems/Procedures: interfacing systems or procedures must be invoked. Organization and

preparation of functional tests is focused on requirements, key functions, or special test

cases. In addition, systematic coverage pertaining to identify Business process flows, data

fields, predefined processes.

6.3 TEST CASES

47

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

 7.CONCLUSION

[IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 37

7.1 CONCLUSION

As the weeds are mostly quick growers and compete with the crops for light, water,

nutrients, and space, it is very important remove weeds from the crops. But manually

removing them is tedious and takes a lot of time. Spraying herbicides can cause

pollution. Hence, a deep learning model is developed using convolution neural network

to detect weeds with a good accuracy so that the model could be used to detect the

weeds in the field in a shorter time. Our proposed work uses Mask R-CNN built on

ResNet 101 and FPN thereby reducing the complexity in training as compared to other

backbones and instance segmentation methods. Further work can be enhanced using

larger datasets for improved results.

7.2 FUTURE SCOPE

We can improve both the training and also the detection time of weeds. We can further

enhance it by attaching it to robots or tractors to pluck the weeds from the crops thereby,

saving the time and reducing the efforts of the farmer. We can also develop the model

further in such a way that it can tell the percentage of weeds and also the future risks.

48

8.BIBILOGRAPHY

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

38 CMRTC

8.BIBILOGRAPHY

8.1 REFERENCES

1. Noxious Weeds Management In: ARTICLE 1.7. California Legislature. 2018.
2. Lanini W, Strange M. Low-input management of weeds in vegetable fields. Calif
Agric. 1991;45(1):11–3.

3. Hodgson JM. The nature, ecology, and control of Canada thistle. vol 1386.
Agricultural Research service, US Dept. of Agriculture.
4. Monaco T, Grayson A, Sanders D. Influence of four weed species on the growth,
yield, and quality of direct-seeded tomatoes (Lycopersicon esculentum). Weed Sci.
1981;29(4):394–7.

5. Nave W, Wax L. Effect of weeds on soybean yield and harvesting efficiency. Weed
Sci. 1971;19(5):533–5.

6. Smith DT, Baker RV, Steele GL. Palmer amaranth (Amaranthus palmeri) impacts
on yield, harvesting, and ginning in dryland cotton (Gossypium hirsutum). Weed
Technol. 2000;14(1):122–6.

7. Weis M, Gerhards R. Detection of weeds using image processing and clustering.
Bornimer Agrartechnische Berichte. 2008;69(138):e144.

8. Desai R, Desai K, Desai S, Solanki Z, Patel D, Patel V. Removal of weeds using
image processing: a technical review. Int J Adv Comput Technol. 2015;4:27–31.

9. Weis M. An image analysis and classification system for automatic weed species
identification in different crops for precision weed management. 2010.
10. Choudhary J, Nayak S. A survey on weed detection using image processing in
agriculture. Int J Comput Sci Eng. 2016;4(6).
11. Mustafa MM, Hussain A, Ghazali KH, Riyadi S, editors. Implementation ofimage
processing technique in real time vision system for automatic weeding strategy. 2007
IEEE International Symposium on Signal Processing and Information Technology;
2007: IEEE.
12. Robovator. VisionWeeding.
13. Herrera P, Dorado J, Ribeiro Á. A novel approach for weed type classification
based on shape descriptors and a fuzzy decision-making method. Sensors.
2014;14(8):15304–24.

14. Aravind R, Daman M, Kariyappa B, editors. Design and development of automatic
weed detection and smart herbicide sprayer robot. 2015 IEEE Recent Advances in
Intelligent Computational Systems (RAICS); 2015: IEEE.

49

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 39

8.2 WEBSITES

leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?lawCode=FAC&divisio

n=4 http://www.visionweeding.com/robovator/.

http://www.visionweeding.com/robovator/

8.3 GITHUB LINK

 https://github.com/sunilnanigit/weed-detection-

50

http://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?lawCode=FAC&division=4
http://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?lawCode=FAC&division=4
http://www.visionweeding.com/robovator/
http://www.visionweeding.com/robovator/
https://github.com/sunilnanigit/weed-detection-

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 39

9.PAPER PUBLICATION

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 39

10.CERTIFICATES

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 39

57

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 39

58

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 39

59

IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS

CMRTC 39

60

